Espressif IOT Demo
Smart Light/Plug/Sensor

Version 1.0.1

Espressif Systems IOT Team
Copyright (c) 2015

N
@ Espressif Systems ESP8266 sok api uide

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use
of information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.

The WiFi Alliance Member Logo is a trademark of the WiFi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of
their respective owners, and are hereby acknowledged.

Copyright © 2015 Espressif Systems Inc. All rights reserved.

Espressif Systems Confidential 2/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

Tahle of Gontent

1. Preambles ... s 4
P © 1Y = T 4
2.1. Source Code LayOuUL...........uuiiiiiiiiiiiiieie e e e 4

T OB USI 4

2. Folder "INClude” ... 5

3. FOIder "AriVer" ... 5

4. 0Operating MOGE. ... 5

2.2. Debugging TOOIS ... e 5

1. Common errors iN CUI ... 5

3. Functions for LAN.......e i iiinnnee s ns s s sm s s nn s s s s nmmmsnnnns 6
3.1. General FUNCHIONS.........uuiiiiiiii ettt 6

1. Get version iNformationeiie oo 6

2. Set conNeCtioN ParaMETEN........uuuviiiiiiei i 6

3.2. Device search in LAN ... e 9

3.3. T SRR 11

T GBE SEALUS ettt e e 11

2. Sl SHAtUS ..o 11

3.4. T |0 S 11

L 1= B = (0TSSP PPPPP 11

2. SEE SIALUS . ettt 12

3.5. Humidity-Temperature SENSOT............uuuueuueeiueiiiiiiieeieeeieeeieeeeeneeeeeeeneennn. 12

4. Functions for WAN............cciiiiimmrmrrrnnnnmmee s nnas s s 12
4.1. Espressif CloUud SEIVET ...t 12

LI o 1= 011117 o] o PSP PRSP 14

2. PING SEIVEL ... 14

B PIUG e 14

N 1 1o | | (RS URR PP 16

5. Humidity and Temperature SENSONcccuvvvvriieeeeeiiiiiiiiee e 17

4.2. User Defined Reverse COoNtrolcoovooiicieeiieieeececeeeeee e 18

Espressif Systems Confidential 3/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

1. Preambles

Herein, we introduce a series of embedded applications based on Espressif’'s SoC with WiFi
connectivity ESP8266. The loT demo applications here showcase how you can develop an entire
application with this single SoC, and to realize smart connectivity for three kinds of products: smart
power plugs, smart lights, and humidity-temperature sensors. In addition, our Espressif cloud
server enables the reverse control of devices and data collection.

With the IoT demo, users can rapidly develop a variety of similar applications.

2. Overview

The SDK provides a set of interfaces for data receive and transmit functions over the WiFi and TCP/IP
layer so programmers can focus on application development on the high level. Users can easily
make use of the corresponding interfaces to realize data receive and transmit.

All networking functions on the ESP8266 loT platform are realized in the library, and are not
transparent to users. Instead, users can initialize the interface in user_main.c.

void user_init(void) isthe default method provided. Users can add functions like firmware
initialization, network parameters setting, and timer initialization in the interface.

The SDK provides an APl to handle JSON, and users can also use self-defined data types to handle
the them.

2.1. Source Code Layout

1. Folder "usr"
The loT demo source code of is in the "usr" folder, and the details are as follows:
user_main.c — main file
user_webserver.c — creates a TCP server, provides REST light weighted webserver function
user_devicefind.c — creates a UDP transmission, provides device look-up function
user_esp_platform.c — communicate with Espressif Cloud
user_json.c — json packet processing function
user_plug.c —demo of plug device
user_light.c — demo of PWM light device

user_humiture.c —demo of humidity-temperature sensor device

Espressif Systems Confidential 4/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

2. Folder "include"

Header files are stored in the include folder. The "user_config.h" define variables to select the
platform and demo type to compile.

Example:
PLUG_DEVICE, LIGHT_DEVICE, SENSOR_DEVICE
SENSOR_DEVICE can be sub-divided into HUMITURE_SUB_DEVICE and
FLAMMABLE_GAS_SUB_DEVICE.
3. Folder "driver"

Our divers currently supports 12C Master, SPI, external buttons, PWM and Dual UART.

4. Operating Mode

The WiFi operating mode in this loT Demo is softAP + station -> station. It is set to softfAP + station
mode in user_esp_platform_init . Users can connect to the LAN via the softAP interface and send
commands to connect to the router via the station interface. Through the softAP interface, the user
can query the station connection status. After connection to the router is successful, the device can
be set to station mode. (For more details, please referto 3.1.2 Setting Connection Parameters)

By default, the SSID for softAP is ESP_XXXXXX, where XXXXXX are the last three bytes of the MAC
address. The default encryption mode is WPA/WPA2.

In station mode, by pressing the button for 5 seconds, the device will be reset and restarted to
initial softAP + station mode for reconfiguration.

2.2. Debugging Tools

The Cloud Server in the loT Demo uses the REST architecture. When the PC is communicating with
the loT Demo device, curl commands can be used.

Download the specified version on http://curl.haxx.se/download.html . For use of curl commands
here, please refer to the examples shown in "Windows curl".

If you use Linux curl or Cygwin curl, please refer to examples of the curl command in "Linux/Cygwin
curl".

Unless otherwise specified, both can be used.

1. Common errors in Curl
Take note of the upper and lower case in the commands, otherwise the command may fail.
The number of spaces curl commands may cause it to fail.
Token generated on the Server is only for 1 device and cannot be shared.

Use the right command format for Linux/Cygwin or Windows Curl. Do not mix them up.

Espressif Systems Confidential 5/19 Friday, March 20, 2015

http://curl.haxx.se/download.html

N
@ Espressif Systems ESP8266 sok api uide

3. Functions for LAN

Default IP address of softAP mode is 192.168.4.1. In station mode the IP address is assigned by
router. The IP address in the URL represents IP in softAP and station mode depending on which is
required.

Espressif softAP needs a password to connect. The password format is as follows:

device’s_softAPMAC_PASSWORD.

The password defined in esp_iot_sdk/app/include/user_config.h is the softAP’'s PASSWORD.
For example:

The "PASSWORD" defined in esp_iot_sdk_v.08 is vx%sW>L<@i&Nxe !

The softAP MAC address of a device is 1a: fe:86:90:d5:7b

So the connection password is 1a: fe:86:90:d5: 7b_v*%W>L<@i&Nxe!

3.1. General Functions

1. Get version information

curl -X GET http://ip/client?command=info
Response:
{
"Version": {
"hardware":"0.1",
"software":"0.8.0"
H
"Device": {
"product":"Plug",

"manufacture", "Espressif Systems"

2. Set connection parameter

Device initial state is softAP+station mode. Connect PC to LAN provided by device softAP’s interface
(password described above) and send curl to control device through PC.

Espressif Systems Confidential 6/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

Set station mode
PCs send following command and connect device to the external network.

Linux/Cygwin curl:

curl =X POST -H "Content-Type:application/json" -d '{"Request":{"Station":
{"Connect_Station":{"SSID":"tenda", "password":"1234567890", "token":
""'1234567890123456789012345678901234567890"}}}}"' http://192.168.4.1/config?
command=wifi

Windows curl:

curl =X POST -H "Content-Type:application/json" —-d "{/"Request/":{/"Station/":
{/"Connect_Station/":

{/"SSID/":/"tenda/", /"password/":/"1234567890/", /"token/": /"123456789012345678901
2345678901234567890/"}}}}" http://192.168.4.1/config?command=wifi

After the setup is completed, connect the device to the router in the command.
Note:

The red token length field is a random hexademical string of 40 bytes. Device will
send this random token to server for activation and identification

Users use the same random token to apply for control access to the device from Espressif Cloud, so
random token cannot be shared with other devices.

PS:

If router(AP) config is WEP HEX , the password need to convert into HEX in curl.

For example:

SSID of routeris "wifi_1", the password is"tdr0123456789", encryptas "WEP HEX", then

Linux/Cygwin curl:

curl =X POST -H Content-Type:application/json -d '{"Request":{"Station":
{"Connect_Station":{"SSID":"wifi_1", "password":"74647230313233343536373839",
"token": "1234567890123456789012345678901234567890"}}}}"' http://192.168.4.1/config?
command=wifi

Windows curl:

curl =X POST -H "Content-Type:application/json" —-d "{/"Request/":{/"Station/":
{/"Connect_Station/":

{/"ssS1ip/":/"wifi_1/", /"“password/":/"74647230313233343536373839/", /"token/": /"1234
567890123456789012345678901234567890/"}}}}" http://192.168.4.1/config?command=wifi

During the connection, the command below can be sent through PC side to query the connection
status of device

curl =X GET http://ip/client?command=status

Espressif Systems Confidential 7/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

Response:

enum {
STATION_IDLE = 0,
STATION_CONNECTING,
STATION_WRONG_PASSWORD,
STATION_NO_AP_FOUND
STATION _CONNECT FAIL,
STATION_GOT_IP

enum {
DEVICE _CONNECTING = 4
DEVICE_ACTIVE_DONE
DEVICE_ACTIVE_FAIl
DEVICE_CONNECT_SERVER_FAIL

After connecting the PC side will send following command and change the device mode from softAP
+station mode to station mode.

For the devices which support reverse control, such as switches, lights and so on, command is:

curl =X POST http://ip/config?command=reboot

For the devices which do not support reverse control, such as sensors, the command is:

curl =X POST http://ip/config?command=sleep

The sensor devices will wake up automatically after sleep 30s and mode will be changed to station
mode.

Set softAP parameters

Devices send following command and set parameters for softAP, such as SSID, password and so on.

Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"Request":{"Softap":
{"Connect_Softap":{"authmode":"OPEN", "channel":6, "SSID":"ESP_IOT_SOFTAP",
"password":""}}}}' http://192.168.4.1/config?command=wifi

Windows curl:

curl =X POST -H "Content-Type:application/json" -d "{/"Request/":{/"Softap/":
{/"Connect_Softap/":{/"authmode/":/"0OPEN/", /"channel/":

Espressif Systems Confidential 8/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

6, /"SSID/":/"ESP_IOT_SOFTAP/", /"password/":/"/"}}}}" http://192.168.4.1/config?
command=wifi

The devices need to be rebooted before changes take effect.
Note:
authmode supports following modes: OPEN, WPAPSK, WPA2PSK, WPAPSK/WPA2PSK.

password must be no less than 8 bytes.

3. Transformation of wifi mode
Since esp_iot_sdk_v0.9.2, transformation of wifi mode is as follows:
e Device initial state is softAP+station mode.

o Phone APP (or PC) connects to ESP8266 softAP, sends a command to make ESP8266
station connect to router (AP) .

o Connected to router (AP) , ESP8266 tries to communicate with server for authentication. If
succeed , ESP8266 changes to station mode.

e Afterthat, ESP8266 is in station mode, only if it is disconnected from the network, ESP8266
will convert into softAP + station mode again. Then restart from step (2), try to connect again.

e If fail to connect to router(AP), ESP8266 will try another router(AP) which has been recorded.
This function in source code defines as "#define AP_CACHE".

3.1. Device search in LAN

Find devices by sending UDP broadcast packets to port 1025 in the LAN. The message sent is "Are
You Espressif IOT Smart Device?". Devices will respond to the received UDP broadcast packets with a
string.

Espressif Systems Confidential 9/19 Friday, March 20, 2015

\
Espressif Systems ESP8266 sok api uide

This function can be tested by using the network debugging assistant, for example:

g | il Siand
(1) hixxs [Receive from 192 188.4 101 : 1025) : Are You Espressif IOT Smart

[UDFP ZI Davsce?

[Receive from 192 168.4.1 : 1085) : I's Humiture la fe!34:97:85:33
(2) Pt 192 188, 4.1

{192.168. 4 .101
(3) THWROE

pnf

@ i FF

#|EEeE

™ e
I~ frsEsEdg
I 4788

I ¥fsker
grEsiE ARRT
EERwR

I RAXAHNES.
[= e
M REREINT
™ 7 oReEE
I HERIBTEE x4 [192.168. 4 255 EiEgn. 1025

REER 00 E Are Tou Espressif IOT Saart Device? .
% | ® ik

Response:

e Plug

I'm Plug.XX:XX:iXX:IXXIXXIXXYYY.YYY-YYY-YYY

e Light

I'm Light.XX:XX:iXXiXX:IXX:IXXYYY.YYY.YYY.YYY

e Humidity and Temperature Sensor

I'm Humiture.xx:XX:XX:iXXiXXiXXYYY.YYY.YYy.yyy

Where XX:iXXiXXiXXiXXiXX is the device MAC address and yyy.Yyyy.Yyyy.Yyyy is the

device IP address. There is no response for the wrong string.

Espressif Systems Confidential 10/19 Friday, March 20, 2015

\
@ Espressif Systems

3.2. Plug

1. Get Status

ESP8266 sok api Guide

curl =X GET http://ip/config?command=switch

Response

{
"Response": {
"status'": 0
I
}

Status can be 0 or 1.

2. Set Status
Linux/Cygwin curl:

curl =X POST -H "Content-Type:application/json" -d '{"Response":{"status":1}}'

http://ip/config?command=switch

Windows curl:

curl -X POST -H "Content-Type:application/json"
http://ip/config?command=switch

-d "{/"Response/":{/"status/":1}}"

status can be 0 or 1.

3.3. Light

1. Get Status

curl =X GET http://ip/config?command=1ight

Response:
{
"freq": 100,
"rgb": {
"red": 100,
"green": 0,
"blue": 0
}
}

Range: freq can be 1~500 while red, green, blue can be 0~255.

Espressif Systems Confidential 11/19

Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

2. Set Status
Linux/Cygwin curl:

curl -X POST -H "Content-Type:application/json" -d '{"freq":100, "rgb":{"red":200,
"green":0, "blue":0}}' http://ip/config?command=1ight

Windows curl:

curl -X POST -H "Content-Type:application/json" -d "{/"freq/":100, /"rgb/":{/"red/":
200, /"green/":0, /"blue/":0}}" http://ip/config?command=1ight

Range: freq can be 1~500 while red, green, blue can be 0~255.

3.4. Humidity-Temperature Sensor

The humidity-temperature sensor status need to be obtained from Espressif Cloud Server through
internet.

4. Functions for WAN

4.1. Espressif Cloud Server

Specifications and details of the Espressif Cloud Server, including introduction of the APIs can be
found on the server itself.

Note:

e "Device " refers to the operation which that the device runs by itself and needs no user
intervention.

o "PC" refers to the commands that users can send to the device to run.

master-device-key

The Espressif Cloud server is designed such that each device needs to apply for a master device key
from it and burned to SPI flash.

Please refer to the document Espressif Cloud Introduction.
Activation

Device

After setting the SSID, password and random token through softAP interface, the device's station
interface will connect to router for activation. Once it gets IP address from router, it will try to
connect to the server automatically for activation.

Espressif Systems Confidential 12/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

Activation requires a TCP packet to be send to the server (IP address 114.215.177.97, port 8000).
Format of TCP packet:

{"path": "/vl/device/activate/", "method": "POST", "meta": {"Authorization":
"token HERE_IS_THE_MASTER_DEVICE_KEY"}, '“body": {"encrypt_method": "PLAIN",
"bSSID": "18:fe:34:70:12:00", "token": "1234567890123456789012345678901234567890"}}

HERE_IS_THE_MASTER_DEVICE_KEY is the device key stored in the SPI flash, and
1234567890123456789012345678901234567890 is the random token set in above section 3.1.2 set
connection parameter.

Response

{"status": 200, '"device": {device}, "key": {key}, "token": {token}}

PC

After PC has configured the device’s SSID, password and token, it needs to be connected to a
router which has access to the internet and applies for device control from server.

Linux/Cygwin curl:

curl =X POST -H "Authorization:token c8922638bb6ec4c18fcf3e44ce9955f19fa3bal2" -d
"{"token": "1234567890123456789012345678901234567890"}"' http://iot.espressif.cn/vl/
key/authorize/

Windows curl:

curl =X POST -H "Authorization:token c8922638bb6ec4c18fcf3e44ce9955f19fa3bal2" -d
"{/"token/": /"1234567890123456789012345678901234567890/"}" http://iot.espressif.cn/
vl/key/authorize/

Response:

{"status": 200, '"key": {"updated": "2014-05-12 21:22:03", 'user_id": 1,
"product_id": @, "name": "device activate share token", ‘'created": "2014-05-12
21:22:03", '"source_ip": "x", ‘'visibly": 1, "id": 149, ‘"datastream_tmpl_id": 0,
"token": "ed74bbadb8e11b97b91019e61b7a018cdbaa3246", '"access_methods": "x",
"is_owner_key": 1, '"scope": 3, "device_id": 29, "activate_status": 1,
"datastream_id": 0, ‘"expired_at": "2288-02-22 20:31:47"}}

c8922638bbbecdc18fcf3eddce?955f19fa3bal2 is an example of user key, and users do need to fill
in their own user key which can be obtained as follows:

e Loginto Espressif server http://iot.espressif.cn/
e Sign in with username password
e Click on Username at the top corner ->Set-up ->Developer.

ed74bbadb8e11b97b9101%9e61b7a018cdbaa3246 is the device's owner key which will be used later
to control the device at PC end.

Espressif Systems Confidential 13/19 Friday, March 20, 2015

http://iot.espressif.cn/

N
@ Espressif Systems ESP8266 sok api uide

1. Identification

After activation the device needs to send TCP packets to Espressif Cloud Server (IP address
115.29.202.58, port 8000). TCP packet format:

{"nonce": 560192812, "path": "/vl/device/identify", '"method": "GET", '"meta":
{"Authorization": "token HERE_IS_THE_MASTER_DEVICE_KEY"}}

The function of this tcp packet is to help the device to confirm its identity. Each time the device
reconnects to server, it should send such a packet. "nonce" is a batch of random numbers, the
string behind token is the master device key.

The server replies to the device with when its identity is successfully confirmed with a data packet:

Response:

{"device": {"productbatch_id": @, "last_active": "2014-06-19 10:06:58", "ptype":
12335, "activate_status": 1, '"serial": '"334a8481", "id": 130, "bSSID": "18:fe:
34:97:d5:33", "last_pull': "2014-06-19 10:06:58", "last_push": "2014-06-19
10:06:58", '"location": "", "metadata": "18:fe:34:97:d5:33 temperature", '"status":
2, '"updated": "2014-06-19 10:06:58", '"description": "device-description-79eba060",
"activated_at": '"2014-06-19 10:06:58", "visibly": 1, "is_private": 1,
"product_id": 1, ‘'"name": "device-name-79eba060", '“created": "2014-05-28 17:43:29",
"is_frozen": 0, "key_id": 387}, "nonce": 560192812, "message": "device
identified", '"status": 200}

The identification process is required for plugs and lights application.

2. PING Server

To maintain the connection of socket under the circumstance that the device doesn't need reverse
control over a long period of time, the device needs to send TCP packets to Espressif Cloud Server
(IP address 115.29.202.58, port 8000) every 50s in following format:

{"path": "/v1/ping/", "method": "POST", "meta": {"Authorization": "token
HERE_IS_THE_MASTER_DEVICE_KEY"}}

Response:

{"status": 200, '"message": '"ping success", 'datetime": "2014-06-19 09:32:28",
"nonce": 977346588}

PING is required in devices that need reverse control like plugs and lights.
3. Plug

Device
During reverse control of devices, there are two cases:

* Device receives get command from the server which indicates that the device needs to send
his own status to the server. Format of device's get command sent from server:

Espressif Systems Confidential 14/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

{"body": {}, "nonce": 33377242, "is_query_device": true, "get": {}, "token":
"e474bba4b8e11b97b91019e61b7a018cdbaa3246", "meta": {"Authorization": '"token
e474bbadb8e11b97b91019e61b7a018cdbaa3246"}, '"path": '/vl/datastreams/plug-status/
datapoint/", '"post": {}, "method": "GET"}

Response:

{"status": 200, "datapoint": {"x": @}, 'nonce": 33377242, "is_query_device":
true}

* When device receives post command from the server, it indicates that the device needs to
change his own status and server will send data packets for instructions. For example, "turn
on the switch" command:

{"body": {"datapoint": {"x": 1}}, 'nonce": 620580862, "is_query_device": true,
"get": {}, "token": "e474bba4b8ellb97b91019e61b7a018cdbaa3246", 'meta":
{"Authorization": "token e474bba4b8e11b97b91019e61b7a018cdbaa3246"}, "path": "/v1/
datastreams/plug-status/datapoint/", '"post": {}, '"method": "POST",
"deliver_to_device": true}

After the switch completes instruction, it will send a successful status update response to the server
in the following format. The "nonce" used to sync request and response must be in consistent to the
"nonce" in the control command previously sent from the server which represents that each control
and response correspond to each other.

Response:

{"status": 200, "datapoint": {"x": 1}, 'nonce": 620580862, 'deliver_to_device":
true}

PC
Get plug status

curl =X GET -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" http://iot.espressif.cn/vl/datastreams/
plug-status/datapoint/

Response:

{"status": 200, ‘'"nonce": 11432809, ‘'datapoint": {"x": 1}, "deliver_to_device":
true}

Set plug status

Linux/Cygwin curl:

curl -=X POST -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" —d '{"datapoint":{"x":1}}' http://
iot.espressif.cn/vl/datastreams/plug-status/datapoint/?deliver_to_device=true

Espressif Systems Confidential 15/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

Windows curl:

curl =X POST -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" —d "{/"datapoint/":{/"x/":1}}" http://
iot.espressif.cn/vl/datastreams/plug-status/datapoint/?deliver_to_device=true

Response:

{"status": 200, '"nonce": 11432809, ‘"datapoint": {"x": 1}, "deliver_to_device":
true}

4. Light

Device
When handling reverse control of devices, there are two cases:

When device receives get command from the server, it needs to send its own status to the server.
The get command format as sent from server to device is as follows:

{"body": {}, "nonce": 8968711, "is_query_device": true, "get": {}, "token":
"e474bba4b8e11b97b91019e61b7a018cdbaa3246", "meta": {"Authorization": "token
e474bbadb8e11b97b91019e61b7a018cdbaa3246"}, '"path": '/vl/datastreams/light/
datapoint/", '"post": {}, "method": "GET"}

Response:

{"nonce": 5619936, '"datapoint": {"x": 100, "y": 200, "z": 0, "k": 0, "1": 50},
"deliver_to_device": true}

When device receives post command from the server, it needs to change its own status and
complete instructions according to data packets from the server. The example given here is the
switch on lights command:

{"body": {"datapoint": {"y": 200, 'x": 100, "k": @, "z": @, "1': 50}}, ‘'"nonce":
5619936, "is_query_device": true, "“get": {}, 'token":
"e474bba4b8e11b97b91019e61b7a018cdbaa3246", "meta": {"Authorization": "token
e474bbadb8e11b97b91019e61b7a018cdbaa3246"}, "path": "/vl/datastreams/light/
datapoint/", 'post": {}, '"method": "POST"

Response:

{"nonce": 5619936, "datapoint": {"x": 100, "y": 200, "z": 0, "k": o, "1": 50},
"deliver_to_device": true}

X = frequency, range 1~500.Y (red), Z(green), K(blue) indicate that the different colours of lights,
range 0~255. L parameters are reserved.

PC
Get light status

Espressif Systems Confidential 16/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

curl —X GET -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" http://iot.espressif.cn/vl/datastreams/
light/datapoint

Response:

{"nonce": 5619936, ‘“datapoint": {"x": 100, "y": 200, "z": 0, "k": 0, "1": 50},
"deliver_to_device": true}

Set light status

Linux/Cygwin curl:

curl =X POST -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" —d '{'datapoint":{"x": 100, "y": 200,
"z": 0, "k": @, "1": 50}} ' http://iot.espressif.cn/vl/datastreams/light/
datapoint/?deliver_to_device=true

Windows curl:

curl =X POST -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" —d "{/"datapoint/":{/"x/": 100, /"y/":
200, /"“z/": @0, /"k/": @, /"1l/": 50}}" http://iot.espressif.cn/vl/datastreams/
light/datapoint/?deliver_to_device=true

Response:

{"nonce": 5619936, '"datapoint": {"x": 100, "y": 200, "z": 0, "k": 0, "1": 50},
"deliver_to_device": true}

X = frequency, range 1~500.

Y (red), Z(green), K(blue)indicate that the different colors of lights, range 0~255. L parameters are
reserved.

5. Humidity and Temperature Sensor

Device

Upload data packets of this format:

{"nonce": 1, "path": "/vl/datastreams/tem_hum/datapoint/", '"method": "POST",
"body": {"datapoint": {"x": 35, "y": 32}}, "meta": {"Authorization": "token
HERE_IS_THE_MASTER_DEVICE_KEY"}}

X = temperature, Y = humidity.
Device key after token. When upload successful, the server will respond as follows:

Response:

Espressif Systems Confidential 17/19 Friday, March 20, 2015

N
@ Espressif Systems ESP8266 sok api uide

{"status": 200, "datapoint": {"updated": "2014-05-14 18:42:54", ‘'created":
"2014-05-14 18:42:54", '"visibly": 1, "datastream_id": 16, "at": '"2014-05-14
18:42:54", M“y": 32, "x": 35, "id": 882644}}

The last data update time will be contained in the response information.

PC
The PC gets sensor information through two kinds of interfaces. Fonts in red are user’s owner key.

e Get the latest information:

curl —=X GET -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" http://iot.espressif.cn/vl/datastreams/
tem_hum/datapoint

Notes: Above mentioned command will respond "remote device is disconnect or busy" since the
sensor does not support reverse control.

® Get historical data collected by sensor devices:

curl —X GET -H "Content-Type:application/json" -H "Authorization: token
e474bbadb8e11b97b91019e61b7a018cdbaa3246" http://iot.espressif.cn/vl/datastreams/
tem_hum/datapoints

4.2, User Defined Reverse Control

The Espressif Cloud Server supports user defined reverse control actions. Send the action to the
device with additional parameters and flexible reverse control can be realized. The command format
is as follows:

Linux/Cygwin curl:

curl =X GET -H "Content-Type:application/json" -H "Authorization: token
HERE_IS_THE_OWNER_KEY" 'http://iot.espressif.cn/vl/device/rpc/?
deliver_to_device=true&action=your_custom_action&any_parameter=any_value'

Windows curl:

curl =X GET -H "Content-Type:application/json" -H "Authorization: token
HERE_IS_THE_OWNER_KEY" "http://iot.espressif.cn/vl/device/rpc/?
deliver_to_device=true&action=your_custom_action&any_parameter=any_value"

The user defined portion is marked red. Users can analyze the action and parameter in codes and
define their own functions.

Device side receives following:

{"body": {}, "nonce": 872709859, '"get": {"action": "your_custom_action",
"any_parameter": "any_value", "deliver_to_device": "true"}, "token":
"HERE_IS_THE_DEVICE_KEY", "meta": {"Authorization": "token HERE_IS_THE_DEVICE_KEY

Espressif Systems Confidential 18/19 Friday, March 20, 2015

\
@ Espressif Systems

ESP8266 sok api Guide

"}

true}

"path": '"/vl/device/rpc/",

"post": {},

"method":

"GET",

"deliver_to_device":

Note: RPC commands can only realize flexible reverse control but does not save history info. For
example, users can define an action to control the fan to stop turning, but server will not record how
many times the fan has turned or stopped.

Espressif Systems Confidential

19/19

Friday, March 20, 2015

